Role of the estrogen/estrogen-receptor-beta axis in the genomic response to pressure overload-induced hypertrophy.

نویسندگان

  • Georgios Kararigas
  • Daniela Fliegner
  • Jan-Åke Gustafsson
  • Vera Regitz-Zagrosek
چکیده

Cardiac hypertrophy, the adaptive response of the heart to overload, is a major risk factor for heart failure and sudden death. Estrogen (E2) and estrogen receptor beta (ERbeta) offer protection against hypertrophy and in the transition to heart failure. However, the underlying pathways remain incompletely defined. We employed a publicly available microarray dataset of female wild-type (WT) and ERbeta knockout (BERKO) mice subjected to pressure overload-induced hypertrophy to perform a systematic investigation of the mechanisms involved in the protection conferred by the E2/ERbeta axis. We show that considerably more genes were modulated in response to pressure overload in BERKO mice than in WT mice. The majority of the identified candidates in BERKO mice were induced, while those in WT mice were repressed. Pathway analysis revealed a similar pattern. This study is the first to demonstrate that the lack of ERbeta led to a significant increase of inflammatory pathways. Mitochondrial bioenergetics- and oxidative stress-related pathways were also modulated. In conclusion, ERbeta acquires the role of gatekeeper of the genomic response of the heart to pressure overload-induced hypertrophy. This may offer the molecular explanation for its cardioprotective role. We consider the present study to be a useful resource and that it will contribute to downstream functional analysis and to the characterization of pathways with previously unknown role in hypertrophy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study of estrogen receptor beta expression in melanoma and benign melanocytic lesions

Background: Malignant melanoma is the most aggressive form of skin cancer. In contrast to other tumors, the role of estrogen in the initiation and progression of melanoma remains unclear. The aim of this study was to evaluate estrogen receptor beta protein expression in human melanoma tissues and in the benign melanocytic lesions. Method: Twenty-one patients, 11 with cutaneous melanoma and 10 w...

متن کامل

The Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat

Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...

متن کامل

Estrogen Receptor Beta Expression in Melanomas Versus Dysplastic Nevi

Dear Editor-in-ChiefMalignant melanoma is a tumor arising from melanocyte; this tumor rarely occurs before puberty, with higher mortality rate in males and better survival rate in female patients affected by metastatic melanoma (1, 2). These facts propose that a relationship and association may exist between estrogens and melanoma. The effects of estrogens are mediated by...

متن کامل

Role of melatonin receptors in the effect of estrogen on brain edema, intracranial pressure and expression of aquaporin 4 after traumatic brain injury

Objective(s): Traumatic brain injury (TBI) is one of the most common causes of death and disability in modern societies. The role of steroids and melatonin is recognized as a neuroprotective factor in traumatic injuries. This study examined the role of melatonin receptors in the neuroprotective effects of estrogen. Materials and Methods: Seventy female ovariectomized Wistar rats were divided in...

متن کامل

I-1: Effect of High Intratesticular Estrogen on

Background: The presence of estrogen receptor beta and aromatase in the germ cell has highlighted the physiological role of the traditionally female hormone, estrogen, in spermatogenesis. Estrogen receptor alpha knockouts and aromatase knockouts have further accentuated the role of estrogen in germ cell maturation. To delineate effects of high intratesticular estradiol in the seminiferous epith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological genomics

دوره 43 8  شماره 

صفحات  -

تاریخ انتشار 2011